
RunSignUp OAuth Integration
RunSignUp OAuth Integration .. 1

Audience ... 1
Introduction .. 1
The General Procedure for OAuth 1.0a authentication. 2

Step 1. Obtain the authentication endpoints and your shared secrets. 2
Step 2. Exchange your web site's secrets for permission to authenticate a
user. .. 4
Step 3. Redirect your user to the Resource Owner Authorization URI 6
Step 4. Respond when your auth_callback URL is called 6
Step 5. Requesting User Profile Information ... 7

Client Libraries and Platform Integration .. 8
PHP ... 9
Express/Node.js ... 11

Desktop and Mobile Applications Error! Bookmark not defined.
Oob Authentication ... 13
Standard Authentication in a Client Application Error! Bookmark not defined.

Audience

This document is intended for a web application software developer,
independent of the language or development environment they may be
using. Some familiarity with the basics of the HTTP protocol
(http://tools.ietf.org/html/rfc2616) is also assumed.

Introduction

The Process of authenticating users with their RunSignUp credentials
allows you to defer your user authentication to RunSignup.com. This
process is similar to what you might go through to call any of the
RunSignUp API functions except here the goal is to redirect the users from
your web site to RunSignUp.com long enough for the user to log in and
then to use the authorization obtained when they log in to request
information about who they are which you can then use to identify them so
they have authorized access from your site/application.

The minimum amount of information you would expect to obtain would be
their user name or id. You can then use this information to track the
authenticated user on your site as they go about their activities. This
authentication will last for a set period of time and then the user may be
asked to renew the approval they have obtained.

This processed is achieved though OAuth 1.0a protocol. This protocol uses
a series of trusted steps to guarantee that not only the user is who they say
they are, but that your website also has authorization to authenticate users
at RunSignUp.com. This is done through the exchange of secrets between
your website and RugnSignup.com.

This document will discuss the process of registering your website and
then using the information you obtain to authenticate and identify your
users after they have been validated by providing their credentials to
RungSignup.com.

This process is different across the many platforms and languages found
on the Internet. To better familiarize you with how deferring authentication
is performed, the topic will be covered in the general case and then
examples will be discussed in several programming environments to
provide practical examples.

If you need more information about this process than is discussed in this
document consult RFC-5849, The OAuth 1.0a Protocol at
https://tools.ietf.org/html/rfc5849 or the OAuth 1.0a specification at
http://oauth.net/core/1.0a .

The General Procedure for OAuth 1.0a authentication.

Step 1. Obtain the authentication endpoints and your shared secrets.

Any registered user of RunSignUp.com can register their web site or
application. Once you have registered as a RunSignup user, go to the
following URL to register your application.

https://runsignup.com/API

Now go to the API keys section on this page. Make sure you have already
signed in. If you have not signed in you will not be able to proceed.

Your Endpoint URLs

On this page your will see a section called OAuth Details. Copy down all
three URLs listed there. These are:

Request Token Endpoint:
https://runsignup.com/oauth/requestToken.php
OAuth Login URL:
https://runsignup.com/OAuth/Verify
Access Token Endpoint:
https://runsignup.com/oauth/accessToken.php

These URLs are the same for all users and represent the endpoints you will
be interacting with during each step of the OAuth authentication process.

Your Application Name

Next, use the Register New Application button. This will display a dialog
asking you to provide an Application Name and an Application URL. Your
Application Name can be anything and is simply used to identify your
application in the list of registered applications. Your application URL
should be a URL on your website that contains a script that knows how to
extract authentication token information from it when it is called by
RunSignup.com.

Your Application/Callback URL

Since you may be in the process of developing this functionality, you may
not yet have a script like this available and that is not a problem. This URL
can be changed later but it is important that you use this exact URL as part
of the authentication process. This URL is referred to as the callback URL
because this is the URL that RunSignUp will use to direct your users back
to your web site once they have been authenticated.

If you do not already know your callback URL, you can use a URL that will
work during the development process. For example:

http://localhost:8080/mysite/auth_callback

Would work just fine during the development process. This is because,
while testing your RunSignUp authentication, your machine knows how to
resolve localhost and since you will initially be the only user of your site
during the testing process, and your site is running on your local machine,
this works just fine.

Keep in mind that once you are ready to go live with RunSignUp.com
authentication, this callback URL must be changed to your registered
domain name so that when RunSignUp redirects your customers back to
you, they can actually find you. This URL should eventually be changed to
something like:

https://mydomain.com/mysite/auth_callback

But for now, localhost and the port you are testing your application on will
work fine.

Record Your Secrets

You actually have three secrets; the first is your Callback URL, which you
already have. The other two, your OAuth Key and your OAuth Secret,

combined with the first, are how your website will prove you are who you
claim to be. Make sure to keep these pieces of information protected on
your website. For now record this information for use in the next step. Note
the terms in parenthesis next each title. These are the OAuth terms for
each piece of information below and this is how they will be referred to in
this document going forward.

Summary

You now know the following facts:

Request Token Endpoint (Temporary Credential Request URI):

https://runsignup.com/oauth/requestToken.php

OAuth Login URL (Resource Owner Authorization URI):

https://runsignup.com/OAuth/Verify

Access Token Endpoint (Token Request URI):

https://runsignup.com/oauth/accessToken.php

Callback URL (oauth_callback):

http://localhost:8080/mysite/auth_callback

OAuth Key (oauth_consumer_key):

cd54e9c9941f147ff37baf1e7260044054c905b1 (SAMPLE)

OAuth Secret (oauth_consumer_secret):

2b0357599155dcc1f79cff0147c9bd49d26f92b7 (SAMPLE)

The last three values will, of course, be different but you have now
registered and collected all the information you need to proceed on to the
next step.

Step 2. Exchange your web site's secrets for permission to authenticate a
user.

Your goal now is to gain permission to access RunSignUp's authentication
page to allow it to authenticate your user. To access this page you must be
able form the correct request to get the authentication page to display for
your to web site. Because OAuth 1.0 does not require that your request
come over an encrypted connection (HTTPS) you must sign the request to
prevent anyone else from using your authentication secrets if they are
intercepted.

This permission request must be sent to the Temporary Credential Request
URI listed above. The response will be either a new token (oauth_token)
and a new secret (oauth_token_secret) if your site's credentials and
signature are valid or a failure. A properly formed http request looks like
this:

POST /oauth/requestToken.php HTTP/1.1
Authorization: OAuth
oauth_callback="http%3A%2F%2F127.0.0.1%3A3000%2Fauth%2Fex
ample%2Fcallback",oauth_consumer_key="cd54e9c8741f147ff37
3af1e7260044054c905b1",oauth_nonce="QgGjlnchj1AlJiR28Ax70
Ylwy5voIi2c",oauth_signature_method="HMAC-
SHA1",oauth_timestamp="1421728747",oauth_version="1.0",oa
uth_signature="sirJ6LqEXeD9UXczetitsm%2B4Qw4%3D"
Host: www.runsignup.com
Accept: */*
Connection: close
User-Agent: Node authentication
Content-length: 0
Content-Type: application/x-www-form-urlencoded

Note that authorization occurs in the http header and not as request
parameters or posted values in the request. Also note that the
oauth_consumer_secret does not actually occur in the authorization
header. Instead, there is a new parameter called oauth_signature, which is
generated by encrypting all of the other parameters with the
oauth_consumer_secret using the method specified in the
oauth_signature_method. You will be using a client authentication library to
mange the creation of your authorization header but it is important to
remember that you will be exchanging these parameters for this response:

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
oauth_token=hh5s93j4hdidpola&oauth_token_secret=hdhd0244k
9j7ao03&oauth_callback_confirmed=true

Or if something goes wrong, it's important to know that RunSignUp.com
will return an explanation for your rejection in the response body. Here is
an example of a request failure:

oauth_problem=parameter_absent&oauth_parameters_absent=oa
uth_callback

Here you are being told that you did not present or provide the correct
oauth_callback. This feedback can be invaluable in diagnosing where
things have gone wrong.

After all of this, it's important to keep in mind that in step two we have
exchanged our oauth_callback, oauth_consumer_key and
oauth_consumer_secret for an oauth_token and an oauth_token_secret.

These parameters will be needed to form the URL you must redirect to at
RunSignUp.com to have the user log in (The resource owner authorization
URI above). The OAuth client usually performs this exchange without any
user interaction (synchronously) on the server and it is easy to miss that
there is an exchange going on at all.

Step 3. Redirect your user to the Resource Owner Authorization URI

Once step two has been completed, you are ready to redirect the users to
RunSignUp's authorization web page. Since step two can be completed
without involving the user, step three is usually part of the same script as
step two. Using your client software, the Resource owner authorization URI
(see step two) is modified to add your newly obtained oauth_token and an
oauth_token_secret. It is now your site's responsibility to redirect the user
to this newly formed URL. Once this is done, your site will wait until they
return using the auth_callback URL. After authentication is completed at
RunSignUp.com, they will be redirected to the auth_callback URL and you
can extract the information to proceed with step 4.

Step 4. Respond when your auth_callback URL is called

RunSignUp.com will call your auth_callback URL. When it does it will have
an oauth_verifier in its URL parameter. This oauth_verifier can now be
exchanged for a new oauth_token and oauth_token_secret. This new token-
secret pair carries with it, the permission of the authenticated user. This
has been the goal all along. When your auth_callback is called, that URL
will look something like this.

http://localhost:8080/mysite/auth_callback?
oauth_token=hh5s93j4hdidpola&oauth_verifier=hfdp7dh39dks9
884

You must now respond by taking this oauth_verifier and sending it back to
RunSignUp.com at the Token Request URI (that you obtained in Step 1) so
that you can obtain the token-signature pair that represents your
authenticated user. That request should look like this:

POST /token HTTP/1.1
Host: runsignup.com
Authorization: OAuth
oauth_consumer_key="
cd54e9c9941f147ff37baf1e7260044054c905b1",
oauth_token="hh5s93j4hdidpola",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="137131201",
oauth_nonce="walatlh",

oauth_verifier="hfdp7dh39dks9884",
 oauth_signature="gKgrFCywp7rO0OXSjdot%2FIHF7IU%3D"

It will be the responsibility of your client software to add these parameters
to this URL and then send the request synchronously and wait for the
response before continuing. The response will look like this:

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded

oauth_token=nnch734d00sl2jdk&oauth_token_secret=pfkkdhi9s
l3r4s00

You have now received the users OAuth token and secret. This should be
stored, either in their session or for longer term use, in a database if
further API calls are to be attempted in their name. For the needs of
completing this authentication, it is assumed that you have at least
preserved it in the session.

If you allow the user to remain logged in beyond the lifetime of your session
then you will most likely have stored some piece of identifying information
in a cookie. Since this information will be unique to your site, you should
use this information to look up the last recorded oauth_token and
oauth_secret. When revalidating this user, you will be expected to perform
step 4 again to make sure these tokens are still valid.

Step 5. Requesting User Profile Information

The act of using your user's oauth_token and oauth_secret to access the
user's profile information is the only means you have of making sure that
they are valid and have not expired. Since you will have to generate an
oauth_signature to accompany this request, you will have to use your
OAuth client to prepare the request. Simply creating the header without the
correct oauth_signature in the header will cause the request to fail.

Below is an example of how you would request the user profile from
RunSignUp once you have obtained the user's tokens.

 GET /rest/user?format=json HTTP/1.1
 Host: photos.example.net
 Authorization: OAuth
 oauth_consumer_key="dpf43f3p2l4k3l03",
 oauth_token="nnch734d00sl2jdk",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131202",

 oauth_nonce="chapoH",

oauth_signature="MdpQcU8iPSUjWoN%2FUDMsK2sui9I%3D
"

Which will return this user profile in the document body.

{
 "user": {
 "user_id": 3114896,
 "first_name": "Bill",
 "last_name": "Reichardt",
 "email": "bill.reichardt@gmail.com",
 "address": {
 "street": "107 Jadds Lane",
 "city": "Northville",
 "state": "NJ",
 "zipcode": "08033",
 "country_code": "US"
 },
 "dob": null,
 "gender": "M",
 "phone": "856-333-9373",
 "profile_image_url":
"\/\/d368g9lw5ileu7.cloudfront.net\/users\/user3114896_profile.bs
CM1Z.png"
 }
}

Client Libraries and Platform Integration

Since you are reading this document it is assumed that you have an
existing web site or service that you intend to integrate RunSignUp.com as
a source for user authentication. Now that we have discussed the general
steps in OAuth 1.0 authentication let's talk about specific client examples
of integrations for your development environment. This process is
complicated because there are usually multiple choices of OAuth client
software available written in the language you are working with and this
document cannot cover all possibilities. We have provided simple examples
in PHP and Node that will hopefully be transferable to the client you choose
for your integration.

PHP

RunSignUp provides a client example based on OAuth implementation
provided as a binary library extension of PHP itself described at
http://php.net/manual/en/book.oauth.php. If you do not have this PHP
extension installed on your system you can install it using pear/pecl. If you
are not sure, perform the verification starting at step 6, below. If you do not
have it installed follow the procedure below for getting the example to run
on a Unix based system. These steps are provided as a guideline for you to
do your own installation but Apache Http installs vary greatly and these
steps are not meant as an exact set of instructions for your system.

1. If you do not already have the pear/pecl commands on your system,
follow the installation procedure here.
http://pear.php.net/manual/en/installation.php

2. It is always a good idea to update your pear database before doing
an install. Use these commands:
 sudo pear channel-update pear.php.net
 sudo pear upgrade-all

3. Find your php.ini file by running php –i
 php -i | grep 'Configuration File'

4. Use pecl to build and install the oauth extension with the command:
 sudo pecl install oauth
This will download an automatically compile the OAuth PHP
extension and add a configuration line for it in your php.ini file. Note
the path that the .so or .dll file gets installed to. You may also need
to add extension_dir= value to your php.ini file if Apache cannot find
oauth.so when it starts up.

5. Restart the Apache web server:
 sudo apachectl –k restart

6. Verify that the oauth extension is running. Look in your httpd.conf file
to find your DocumentRoot directory. In this path create a PHP file
named phpinfo.php which contains the following lines:
 <?php
 phpinfo();
 ?>

7. In your web browser, go to http://localhost/phpinfo.php. It should
respond with a detailed configuration of PHP. Make sure you have an

oauth section present that looks like the one shown below.

8. Clone the PHP example:

git clone https://github.com/RunSignUp-Team/OpenSource.git
9. Copy RunSignUpApiExamples/simpleOauthExample.php to your

server's DocumentRoot.
10. Insert Your oauth_consumer_key and oath_consumer_secret into
simpleOauthExample.php as shown below: (Around line 5)

// Fill in your key and secret
 define('OAUTH_CONSUMER_KEY', 'cd54e9c8741f147ff373af1e7260044054c905b1');
 define('OAUTH_CONSUMER_SECRET', '2b0357503155dcc1f79cee0147c9bd49d26f92b7');

11. Replace the callback_url found on line 53 as shown below:

// Set callback URL to this script (you probably should
have an absolute URL here) $cbUrl =
'http'.(isset($_SERVER['HTTPS'])?'s':'').'://'.$_SERVER[
'SERVER_NAME'].$_SERVER['REQUEST_URI'];

With your registered callback_url:

 $cbUrl = "http://localhost/simpleOauthExample.php";

Note: It is very important that this callback_url match the one you
registered at https://runsignup.com/API. If they don’t match, change the
one at RunSignUp.com to match the current URL of this script on your
server.

12. You are now ready to run the example. In your browser go to
http://localhost/simpleOauthExample.php. If everything is configured
correctly you will be redirected to RunSignUp.com to log in and then
redirected back to your site. You will then be redirected to this same
page and the user's profile will be displayed as an XML document as
shown below:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE user SYSTEM
"https://runsignup.com/rest/rsu.dtd">
<user>
<user_id>3004896</user_id>
<first_name>William</first_name>
<last_name>Reichardt</last_name>
<email>william.reichardt@gmail.com</email>

<address>
<street>107 Ladds Lane</street>
<city>Westville</city>
<state>NJ</state>
<zipcode>08093</zipcode>
<country_code>US</country_code>
</address>

<gender>M</gender>
<phone>856-345-9473</phone>

<profile_image_url>//d368g9lw5ileu7.cloudfront.net/users/
user3004896_profile.bsCM1Z.png</profile_image_url>

</user>

From here you can integrate the steps in this example into your PHP site's
authentication mechanism. When a customer returns to your site, simply
re-issue a request for their profile. If this request fails, you must re-obtain
their oauth_token and oauth_signature again since it may have expired or
have been revoked.

Express/Node.js

RunSignUp authentication has been integrated into the Passport
middleware package (http://passportjs.org/) for the Express web
framework (http://expressjs.com/) for Node.js.

It has been integrated as a library into a forked version of easy-node-
authentication (https://github.com/obiwan314/easy-node-authentication)
which is a sample Passport application created by Scotch.io
(https://scotch.io/collections/easy-node-authentication). This project can

be checked out to create a fully functional example of RunSignUp
authentication for Node.js. Here is the procedure to check it out and run it.

1. Install Node.js if you don't already have it from http://nodejs.org/ .
2. Check out the source.

 git clone https://github.com/obiwan314/easy-node-
authentication.git

3. Change to the newly created directory.
 cd easy-node-authentication

4. Run npm to install the dependent libraries
 npm install

5. Edit the file ./config/auth.js. Enter your oauth_consumer_key and
oauth_consumer_secret in place of the placeholders in the runsignup
section of this file.

6. At https://runsignup.com/API change your callback URL to match
the one already present in the file ./config/auth.js.

7. This example requires Mongo DB for Database Storage. Install this
product at http://www.mongodb.org/. Alternatively, you could stand
a database up at https://modulus.io/ as the Scotch.io tutorial
suggests. Enter your database URL in your config/database.js file.
This database will be used to store your tokens.

8. From the easy-node-authentication directory run the following
command to start the application.
> node server.js

9. In your web browser go to http://localhost:8080. You will see the
login page shown below. Choose the RunSignUp button.

Oob Authentication

Not all clients can expose an oauth_callback endpoint. An application may
be behind a firewall or have an IP address, which cannot be reached from
the Internet, and therefore providing an oauth_callback is just not practical
solution. This is referred to in the OAuth specification as an oob or "out of
band" callback scenario.

In this situation, when redirecting a user to RunSignUp for authentication,
replace the oauth_callback value in your request with "oob". You do not
have to register the oauth_callback on the RunSignUp site as oob, only
provide that value during your redirection request.

When this is done, instead of redirecting your user back to a
oauth_callback URL, a web page like the one shown below will be
generated.

Instruct your user to copy and paste these values back into your
application and proceed onto step 4 in "The General Procedure for OAuth
1.0a authentication" section above, eliminating the need to provide a
reachable oauth_callback URL.

